NMDA receptor signaling in oligodendrocyte progenitors is not required for oligodendrogenesis and myelination.

نویسندگان

  • Lindsay M De Biase
  • Shin H Kang
  • Emily G Baxi
  • Masahiro Fukaya
  • Michele L Pucak
  • Masayoshi Mishina
  • Peter A Calabresi
  • Dwight E Bergles
چکیده

Oligodendrocyte precursor cells (OPCs) express NMDA receptors (NMDARs) and form synapses with glutamatergic neurons throughout the CNS. Although glutamate influences the proliferation and maturation of these progenitors in vitro, the role of NMDAR signaling in oligodendrogenesis and myelination in vivo is not known. Here, we investigated the consequences of genetically deleting the obligatory NMDAR subunit NR1 from OPCs and their oligodendrocyte progeny in the CNS of developing and mature mice. NMDAR-deficient OPCs proliferated normally, achieved appropriate densities in gray and white matter, and differentiated to form major white matter tracts without delay. OPCs also retained their characteristic physiological and morphological properties in the absence of NMDAR signaling and were able to form synapses with glutamatergic axons. However, expression of calcium-permeable AMPA receptors (AMPARs) was enhanced in NMDAR-deficient OPCs. These results suggest that NMDAR signaling is not used to control OPC development but to regulate AMPAR-dependent signaling with surrounding axons, pointing to additional functions for these ubiquitous glial cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ascl1/Mash1 promotes brain oligodendrogenesis during myelination and remyelination.

Oligodendrocytes are the myelin-forming cells of the CNS. They differentiate from oligodendrocyte precursor cells (OPCs) that are produced from progenitors throughout life but more actively during the neonatal period and in response to demyelinating insults. An accurate regulation of oligodendrogenesis is required to generate oligodendrocytes during these developmental or repair processes. We h...

متن کامل

TGFβ signaling regulates the timing of CNS myelination by modulating oligodendrocyte progenitor cell cycle exit through SMAD3/4/FoxO1/Sp1.

Research on myelination has focused on identifying molecules capable of inducing oligodendrocyte (OL) differentiation in an effort to develop strategies that promote functional myelin regeneration in demyelinating disorders. Here, we show that transforming growth factor β (TGFβ) signaling is crucial for allowing oligodendrocyte progenitor (OP) cell cycle withdrawal, and therefore, for oligodend...

متن کامل

A selective thyroid hormone β receptor agonist enhances human and rodent oligodendrocyte differentiation.

Nerve conduction within the mammalian central nervous system is made efficient by oligodendrocyte-derived myelin. Historically, thyroid hormones have a well described role in regulating oligodendrocyte differentiation and myelination during development; however, it remains unclear which thyroid hormone receptors are required to drive these effects. This is a question with clinical relevance sin...

متن کامل

TACE/ADAM17 is essential for oligodendrocyte development and CNS myelination.

Several studies have elucidated the significance of a disintegrin and metalloproteinase proteins (ADAMs) in PNS myelination, but there is no evidence if they also play a role in oligodendrogenesis and CNS myelination. Our study identifies ADAM17, also called tumor necrosis factor-α converting enzyme (TACE), as a novel key modulator of oligodendrocyte (OL) development and CNS myelination. Geneti...

متن کامل

Sonic hedgehog promotes generation and maintenance of human forebrain Olig2 progenitors

Function of oligodendrocytes (OLs), myelin forming cells in the CNS, is disrupted in demyelinating diseases such as periventricular leukomalacia or multiple sclerosis. It is, thus, important to better understand factors that can affect generation or differentiation of human OLs. In rodents, Sonic hedgehog (Shh) is influencing expression of Olig2, a helix-loop-helix transcription factor required...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 35  شماره 

صفحات  -

تاریخ انتشار 2011